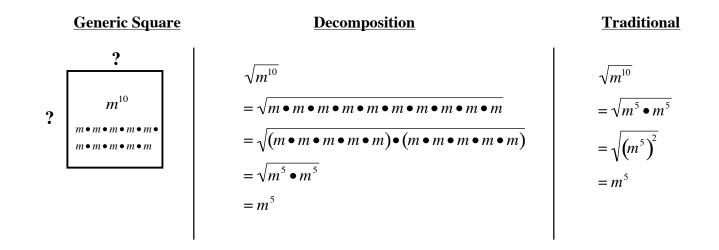
## Square & Square Roots

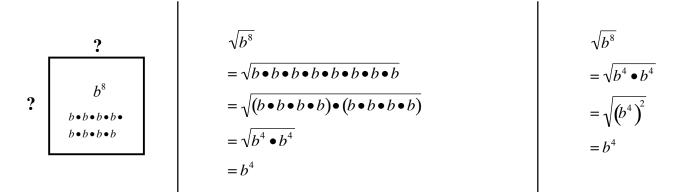
Objective: Students will be able to square a number and find the square root of a number.

Standards: 7NS 2.4


| Squaring a Number | Taking a Square Root |                       |                                                                   |  |  |
|-------------------|----------------------|-----------------------|-------------------------------------------------------------------|--|--|
| 2                 | 2•2                  | $\sqrt{4}$            |                                                                   |  |  |
|                   |                      |                       | Draw a rectangle (we are going to                                 |  |  |
| 2 4               | $= 2^2$              | $=\sqrt{2\bullet 2}$  | define a square and why its called                                |  |  |
|                   | = 4                  | = 2                   | square & square root).                                            |  |  |
|                   |                      | - 2                   | This restangle has an area of 4                                   |  |  |
|                   |                      |                       | This rectangle has an area of 4.<br>What would be the dimensions? |  |  |
| 3                 |                      |                       |                                                                   |  |  |
|                   | 3•3                  | $\sqrt{9}$            | [2 & 2]                                                           |  |  |
| 3 9               | $= 3^2$              | $=\sqrt{3 \bullet 3}$ | Show multiplying 2 times 2,                                       |  |  |
|                   |                      |                       | writing it using exponents and                                    |  |  |
|                   | =9                   | = 3                   | getting 4.                                                        |  |  |
|                   |                      |                       |                                                                   |  |  |
|                   |                      |                       | This is called "squaring a                                        |  |  |
| 4                 |                      |                       | number".                                                          |  |  |
|                   | 4•4                  | $\sqrt{16}$           | The inverse of squaring a number                                  |  |  |
| 1 1(              | $=4^{2}$             |                       | is taking the square root. We                                     |  |  |
| 4 16              | = 4                  | $=\sqrt{4 \bullet 4}$ | write like this $\sqrt{4}$ . We need to                           |  |  |
|                   | =16                  | = 4                   | think: "what number multiplied                                    |  |  |
|                   |                      |                       | by it self equals 4? "We know                                     |  |  |
|                   |                      |                       | that 2 times 2 is 4. Because 2                                    |  |  |
|                   |                      |                       |                                                                   |  |  |
|                   |                      |                       | times 2 equals 4, then the square<br>root of 4 is 2.              |  |  |
| 5                 | 5•5                  | $\sqrt{25}$           |                                                                   |  |  |
|                   | 5•5                  | V23                   |                                                                   |  |  |
|                   | $=5^{2}$             | $=\sqrt{5\bullet 5}$  |                                                                   |  |  |
| 5 25              |                      |                       |                                                                   |  |  |
|                   | = 25                 | = 5                   |                                                                   |  |  |
|                   |                      |                       | Think-Pair-Share:                                                 |  |  |
|                   |                      |                       | * What shape did we draw in all                                   |  |  |
|                   |                      |                       | the cases? [a square]                                             |  |  |
| 6                 |                      |                       |                                                                   |  |  |
|                   | 6•6                  | $\sqrt{36}$           | * Why do you think raising a                                      |  |  |
|                   |                      |                       | number to the second power is                                     |  |  |
|                   | $=6^{2}$             | $=\sqrt{6\bullet 6}$  | called squaring a number?                                         |  |  |
| 36                | = 36                 | =6                    |                                                                   |  |  |
|                   |                      |                       |                                                                   |  |  |
|                   |                      |                       | *When we use the $$ we                                            |  |  |
|                   |                      |                       | only want the positive square                                     |  |  |
|                   |                      |                       | root. This is called the                                          |  |  |
|                   |                      |                       | Principal Square Root                                             |  |  |
|                   |                      |                       |                                                                   |  |  |

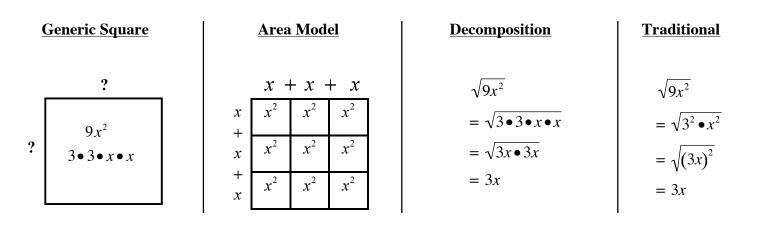
#### Simplifying Expression with Square Roots

\*Remember: the  $\sqrt{}$  represents the Principal Square Root (a positive square root). When we have  $\sqrt{x^2}$ , the square root must be |x|, since we don't know if x is a positive or negative


#### Example 1

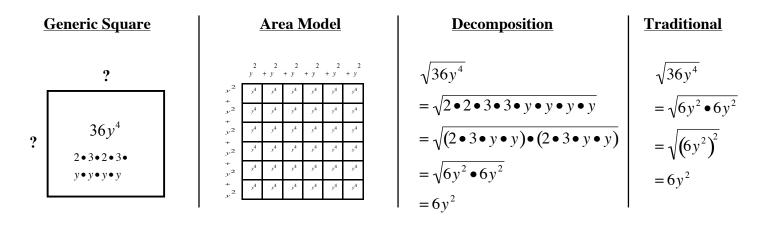
Simplify.




### You Try 1

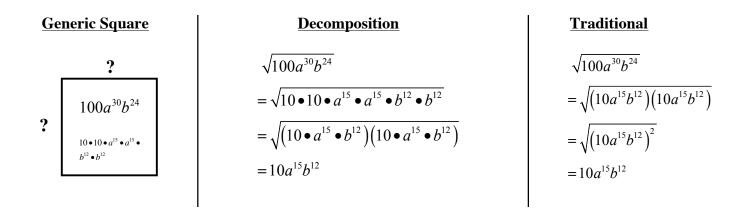
Simplify.




#### Example 2

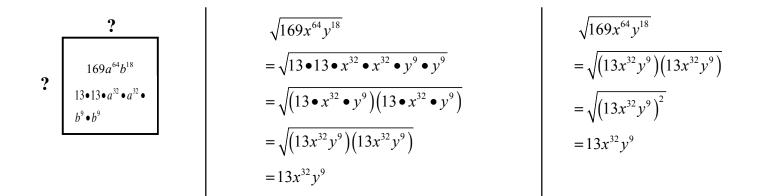
Simplify.




## You Try 2

Simplify.




#### Example 3

Simplify.



## You Try 3

Simplify.



## Squares and Square Roots

| Number | Squaring<br>a Number | Expanded<br>Notation | Perfect<br>Square | Taking the<br>Square<br>Root | Identify<br>Factor<br>Pairs | Square<br>Root<br>(Principle) |
|--------|----------------------|----------------------|-------------------|------------------------------|-----------------------------|-------------------------------|
| 2      | $2^{2}$              | $=2 \bullet 2$       | = 4               | $\sqrt{4}$                   | $=\sqrt{2\bullet 2}$        | = 2                           |
| 3      | 3 <sup>2</sup>       | = 3•3                | =9                | $\sqrt{9}$                   | $=\sqrt{3\bullet 3}$        | = 3                           |
| 4      | 4 <sup>2</sup>       | $= 4 \bullet 4$      | =16               | $\sqrt{16}$                  | $=\sqrt{4 \bullet 4}$       | = 4                           |
| 5      | 5 <sup>2</sup>       | =5•5                 | = 25              | $\sqrt{25}$                  | $=\sqrt{5\bullet 5}$        | = 5                           |
| 6      | 6 <sup>2</sup>       | =6•6                 | = 36              | $\sqrt{36}$                  | $=\sqrt{6\bullet 6}$        | = 6                           |
| 7      | $7^{2}$              | = 7 • 7              | = 49              | $\sqrt{49}$                  | $=\sqrt{7\bullet7}$         | = 7                           |
| 8      | 8 <sup>2</sup>       | $= 8 \bullet 8$      | = 64              | $\sqrt{64}$                  | $=\sqrt{8\bullet 8}$        | = 8                           |
| 9      | 9 <sup>2</sup>       | =9•9                 | = 81              | $\sqrt{81}$                  | $=\sqrt{9\bullet 9}$        | = 9                           |
| 10     | 10 <sup>2</sup>      | $=10 \bullet 10$     | =100              | $\sqrt{100}$                 | $=\sqrt{10\bullet10}$       | =10                           |
| 11     | 112                  | =11•11               | =121              | $\sqrt{121}$                 | $=\sqrt{11\bullet11}$       | =11                           |
| 12     | 12 <sup>2</sup>      | =12•12               | =144              | $\sqrt{144}$                 | $=\sqrt{12 \bullet 12}$     | =12                           |
| 13     | 13 <sup>2</sup>      | =13•13               | =169              | $\sqrt{169}$                 | $=\sqrt{13 \bullet 13}$     | =13                           |
| 14     | 14 <sup>2</sup>      | =14 • 14             | =196              | $\sqrt{196}$                 | $=\sqrt{14 \bullet 14}$     | =14                           |
| 15     | 15 <sup>2</sup>      | =15•15               | = 225             | $\sqrt{225}$                 | $=\sqrt{15\bullet 15}$      | =15                           |
| 16     | 16 <sup>2</sup>      | =16•16               | = 256             | $\sqrt{256}$                 | $=\sqrt{16\bullet 16}$      | =16                           |
| 17     | 17 <sup>2</sup>      | =17•17               | = 289             | $\sqrt{289}$                 | $=\sqrt{17\bullet 17}$      | =17                           |
| 18     | 18 <sup>2</sup>      | =18•18               | = 324             | $\sqrt{324}$                 | $=\sqrt{18\bullet 18}$      | =18                           |
| 19     | 19 <sup>2</sup>      | =19•19               | = 361             | $\sqrt{361}$                 | $=\sqrt{19\bullet 19}$      | =19                           |
| 20     | $20^{2}$             | $= 20 \bullet 20$    | = 400             | $\sqrt{400}$                 | $=\sqrt{20 \bullet 20}$     | = 20                          |
| 25     | 25 <sup>2</sup>      | = 25 • 25            | = 625             | $\sqrt{625}$                 | $=\sqrt{25 \bullet 25}$     | = 25                          |

## Squares and Square Roots

| Number | Squaring<br>a Number | Expanded<br>Notation | Perfect<br>Square | Taking the<br>Square<br>Root | Identify<br>Factor<br>Pairs | Square<br>Root<br>(Principle) |
|--------|----------------------|----------------------|-------------------|------------------------------|-----------------------------|-------------------------------|
| 2      | $2^{2}$              | =2•2                 | = 4               | $\sqrt{4}$                   | $=\sqrt{2\bullet 2}$        | =2                            |
| 3      | 3 <sup>2</sup>       | = 3•3                |                   | $\sqrt{9}$                   | $=\sqrt{3\bullet 3}$        |                               |
| 4      | 4 <sup>2</sup>       | $= 4 \bullet 4$      |                   | $\sqrt{16}$                  |                             |                               |
| 5      | 5 <sup>2</sup>       |                      |                   | $\sqrt{25}$                  |                             |                               |
| 6      |                      |                      |                   |                              |                             |                               |
| 7      |                      |                      |                   |                              |                             |                               |
| 8      |                      |                      |                   |                              |                             |                               |
| 9      |                      |                      |                   |                              |                             |                               |
| 10     |                      |                      |                   |                              |                             |                               |
| 11     |                      |                      |                   |                              |                             |                               |
| 12     |                      |                      |                   |                              |                             |                               |
| 13     |                      |                      |                   |                              |                             |                               |
| 14     |                      |                      |                   |                              |                             |                               |
| 15     |                      |                      |                   |                              |                             |                               |
| 16     |                      |                      |                   |                              |                             |                               |
| 17     |                      |                      |                   |                              |                             |                               |
| 18     |                      |                      |                   |                              |                             |                               |
| 19     |                      |                      |                   |                              |                             |                               |
| 20     |                      |                      |                   |                              |                             |                               |
| 25     |                      |                      |                   |                              |                             |                               |

**CAHSEE Released Test Questions:** 

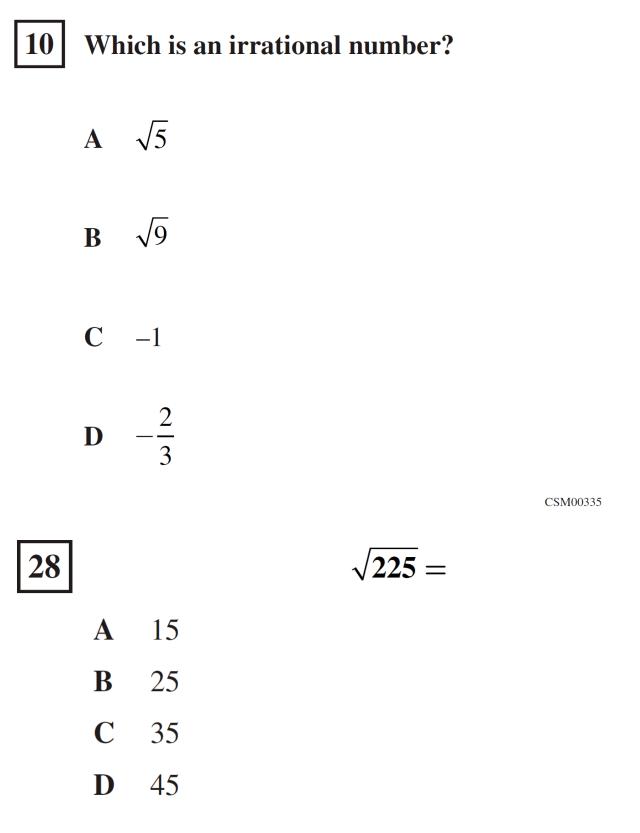
**29.** 
$$(3^8)^2 =$$
  
**A**  $3^4$   
**B**  $3^6$   
**C**  $3^{10}$   
**D**  $3^{16}$ 

- 34. The square of a whole number is between 1500 and 1600. The number must be between—
  - **A** 30 and 35.
  - **B** 35 and 40.
  - **C** 40 and 45.
  - **D** 45 and 50.

M00313

# 35. Between which two integers is the value of $\sqrt{61}$ ?

- **A** 6 and 7
- **B** 7 and 8
- **C** 8 and 9
- **D** 9 and 10


M22059

## 87. Which expression is equal to $\sqrt{100a^2}$ ?

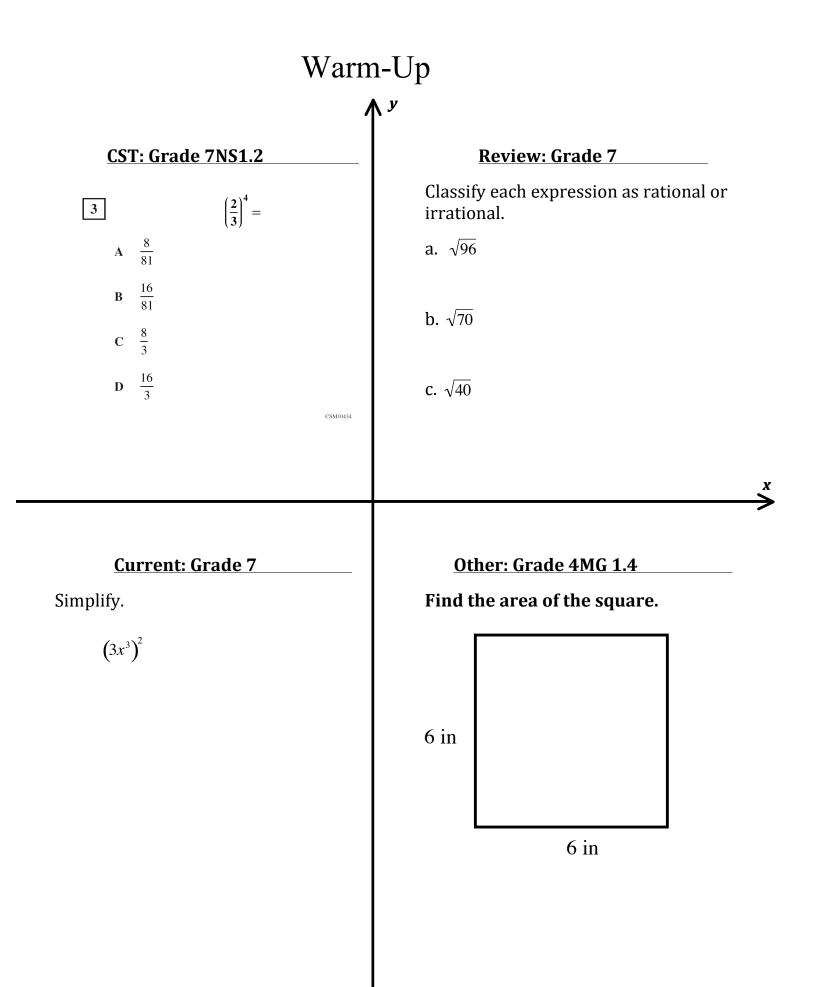
- **A** 10*a*
- **B** 50*a*
- **C**  $10a^2$
- **D**  $50a^2$

M2064

## **CST Math 7 Released Test Questions:**



CSM01839


# **29** If x = 100, what is the value of $4\sqrt{x}$ ?

- **A** 20
- **B** 40
- **C** 100
- **D** 200

## **30** The value of $\sqrt{85}$ is between which two integers?

- **A** 8 and 9
- **B** 9 and 10
- **C** 41 and 42
- **D** 42 and 43

CSM40231

